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PREFACE

This Memorandum presents the results of computational
experlence with certain variations on the "simplex method”
of solving linear programming problems. The purpose of
this study 1s to establish a basis for comparison of the
efficlencies of various procedures in computation. Re-
search on linear programming is conducted as part of The
RAND Corporation's basic studies in mathematics.

This Memorandum should be of particular Iinterest to
those concerned with linear programming and of general

interest to other mathematlicians and computer speclalists.




SUMMARY

Thls Memorandum summarizes the maln resuits to date
of the SCEMP Project (Standardized Computational Experi-
ments in Mathematical Programming), involving the solution
of nine linear programming problems using 30 varlations
of the simplex method. The statistics collected allow
comparison of most ot the variations which have been
proposed in recent years and indicate the important fea-

tures In the efflcliency of linear programming routines.
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I. INTRODUCTION

There are many ways to solve linear programming
problems. The earliest of these, Dantzig's "simplex
method,"(l) is the most widely used and no equally ef-
fective alternative 1s avallable, Many variations of
the original simplex method have been proposed in the
last {ew years. Computational experience seems to us
the only way to properly compare the computational ef-
ficiencles of the variations; thelr behavior depends so
strongly on features of the process which cannot be
known in advance that a priori estimates of their ef-
fectiveness inspire little confidence. The purpose of
the work reported here has been to compare some of the
outstanding variations with each other in thcir work on
actual linear programming problems, and to set some bench
marks against which other procedures may be measured.

Under the “itle of "SCEMP"--Standardized Compu-
tational Experiments in Mathematical Prougramming--this
work originated in 1960 at a meeting of the Linear Pro-
gramming Committee of the SHARE organization (IBM 70U~
709-7090 users group), when it was suggested that some
of the linear programming routines then forthcoming might
serve the task of evaluating the procedures that had been
discussed. The Committee maintains a file of problems
from which those used here were selected; they are de-

scribed in detall in the next section. A set of




statlstic-collecting routines, modeled on an all-in-
core, FORTRAN-coded linear programming routine for the
IBM 704 and 7090(2) was coded and served 2s the basls
for the computer routines used 1n the present tests.
{The routines and the output of the tests have been re-
tained and can be made available, but the routines are
not recommended for general purposes.)

The nature of the output of these routines has been
given in detall elsewhere.(3) Briefly, 1t consists in
the following quantities for each simplex method iter-
atlon: the amount of infeasibility, the current value of
the objective, the pilvot row and column, the determinant
of the basis, the number of product-form transformation
entries, the number of arithmetic operations performed
in each of several major subdivislions of an iteration,
and the number of non-zero elements in certain arrays of
Interest.* At the end of a problem, the complete solu-
tions are given as well as the "errors"--the extent to
which the final solution fails of being both primal and
duzl feaslble. All solutions obtained have been checked
with those obtalned by other routines on the same prob-
1ems,(u) and the statistic-collecting features have Leen
checked in detail for most of the runs by hand calcu-

lations of a small problem.

’See Sections III and VIII for definitions of temms
used here.
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The experimental data are organized by "runs," each
of which consists of the entire set of test problems, by
means of a routine embodying a particular algorithm
variation. Of the runs done so far in the SCEMP project,
30 furnish the data used in this report; the others bear
on matters not discussed here. Two kinds of data per-
taining to a run have been used in this report: we
consicer the number of simplex method lterations, or
changes of basis, required to reach a certain end--¢ither
the first feasible solution or the optimal solution of
the problem (see Sections IV-VII); and we discuss the
total number of arithmetic operations required (see
Sections VIII and IX). The Appendix 1lists the raw aata
from which the figures presented in the sequel have been
calculated.

Since the voint of most of these experiments has
been to compare alternative methods, the following
general format has been used for thz results. The ap-
propriate data (e.g., number of iterations) for a
particular run are chosen as a base. In order to compare
another run with the base, the datum obtained in the com-
parison run for each of the test problems is divided by
the corresponding datum for the base run; the resulting
ratlo 1s the proportion in which the measure has bLeen
reduced by use of the compared procedure. For example,

suppose that Algorithm I took 20 iterations to solve
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problem 1D and 30 to solve problem 2A; and that Algorithm
11 took 14 and 24 1iterations, respectively. Choosing
Aleorithm I as the base, the comparative results would

be glven as in Table 1-1,

Table 1-1
Algorithm II Compared with Algorithm I
Problem ID 2A avg. c.v.
Alg. II .70 .80 .75 .07

Note that usually the average of the ratios 1s
given, as well as their coefficient of variation (the

standard deviation divided by the average). The prob-

lems will be listed in order of their number of constraints.

The ratios all have equal welghts in the averaging, but
the average could be viewed as an average of the data of
the compared run weighted by the reciprocals of the cor-
responding data of the base run. For this reason, the
average is a somewhat falrer measure when the data of
the base are larger than those ol the compared run.
Owing to the arithmetic of averaging, if II were chosen
as the base and I as the compared run, the resulting
average would be greater than the reciprocal of that of
1-1.

Some gaps appear in the tables that follow. Thre
largest problem cannot be run on the routines using the
standard form of the simplex method, and two other prob-

lems were omitted {rom some "feasible aolution" runs
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because they had starting feasible solutions.

A good deal of specilal terminology 1is used in de-
scribing the computations. Speclal terms are usually
defined by context at their first appearance, which is
signaled in underlining. Most of them are introduced
in Sections III and VIII. While the terms "method” and
"procedure" are used interchangeably in a very zeneral
way, we use the term algorithm to refer to any particu-
lar version of the simplex method which chooses the
pivot column and the pivot row in a particular manner,
regardless of the way in which the data usec in making
the cholce ar: obtained. Thus Sections III to VII study
only algorithms and the data--principally operation
counts--assoclated with them, while the remaining sec-
tions study, 1n part, difleient methods of performing

the same algorithm.
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II. THE PROBLEMS

The linear programming problems on which cur ex-
periments were conducted were drawn from the file of
thirteen problems maintained by the Test Problems and
Experiments Committee of the SHARE Linear Programming
Project. The problems, submitted by various members of
the Committee in 1959 and 1960, were all used as pro-
ductlion problems in thelr businesses; the majorility arose
in 0il refining studies. None were especially construc-
ted for test purposes, or thought "pathological." The
original problems are avallable through the Committee.

Fcur of the problems were not used here, Problem
1C is too small, 4A 1s too large, and 3A and 3B had
awkward input features. Thus our work was done with the
nine problems of Table 2-1.

Throughout this report the problems are listed in
the order of their numbers of constraints. 1In Table 2-1,
the "name" identifies a prcblem in the Committee's files.
All the problems are formulated as problems of minimizing
a linear objective function unaer linear equality con-
straints; some problems have several alternative objective
functions, so that there are always one or more "addi-
tional rows." In our runs the highest-numbered objective
row was used and the remainder ignored.

The "number of variables" includes all the vari-

ables of the problem but no "artificial" variables., The




"number of entries" 1s the number of non-zero quantities

=-T-

appearing among the constraints and objectives. Some

further data regarding starting bases for the problems

are given in Sec. IV,

Name 1D
Number of con- 27
straints: M
Number of ad- 1
ditional
rows: K

Number of vari- 45
ables

Number of 252
entries

Table 2-1
The Test Problems

2A 1E 1A 5A 1G 1F 2B
30 3 33 34 48 66 96

2 8 1 1 1 1 3

103 106 64 78 102 135 162

811 855 245 391 462 644 897

1B
117

253

1210
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III. TERMINOLOGY

In order to describe the algorithms studied, we
develop here csome of the terminology connected with the
simplex method. It is not intended to discuss the pro-
cedure itself, which 1s done in many standard works.(s's)
The discussion in this section 1is entirely in terms of
the standard form of the simplex method; the other forms
are dealt with in Sec. VIII.

Let a linear programming problem have N variables
X150 e0Xy and M -equation constraints. At any stage in

the simplex method solution there is defined a basis,

which is a set of M basic variables, say xJ ,..,xJ H
1 M

let the remaining variables be xJ ,..,xJ . The
M+1 N
current tableau is the set of coefficients of the linear
equations
X

+ a X + ... +a X, =b
Jl 11 JM+1 1,N-M JN 12

X =
VIR S A 8 B RS

which are uniquely defined by the current basis and the
requirement that this set be equivalent to the linear
equations defining the original problem. We say that

the basic variable xJ occuples position i in the
i

basls, for 1 =1,..,M.
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It is further supposed that the objective function
to be minimized 1is expressed at this time in terms of

the nonbasic variables as
Cy X £ R () X + 2z
1 JM+1 N-M JN o’

the coefficients cJ are the reduced costs. (The
quantitles aij and cJ defined here commonly carry a
superior bar to indicate that they change in each iter-
ation; we omit the bar.) The basic solution of the
equations above is obtained by setting all nonbasic
variables to zero, giving the basic varliables the values
le = b1 , etc., and the objective the vclue =z
In a single lteration of the simplex method a pivot

o °

colunn J (where Jusg 18 the index of a nonbasic
variable) and a pivot row I of the tableau are chosen,
and the roles of the basic varilable occupying position
I and the nonbasic variable associated with column J
are interchanged, new data cf the form of the equations
above being obtained by pivoting on the entry ary of
the tableau. The value of the objJective changes by the
amount ¢y by / ar; .

Some M variables must be chosen as the starting
basis for the procedure. If not all these variables
belonp to those of the original problem, the remainder
are artiflicial. Each Instance of a basic variable whcse

current value 1s negative, or of an artificial variable
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whose value is not zero, 1s an infeasibility. A basic
solutlion having no infeasibllities is feasible. When it
is necessary to adjoln artificlal varlables in order to
have a starting basis, we always adjoln for each a column
of coeffictents of the form [0,..,1,..,0] to the original
problem, the single "1" of the column lying in a row cor-
responding to an otherwise unoccupled position of the
basis. When there are infeaslbilities, a separate ob-
Jective function 1nvolving them is defined, and 1t is

required that this infeasibility objective be minimized.

The process of minimizing that objective is Phase One;
the subsequent m‘nimization of the proper objective, once
a feasible solution 1s obtained, is Phase Two.

In the sequel we refer to the ordinary simplex method,
by which we mean the simplcx method as most commonly pre-
sented, except that we extend the usual procedure for the
choice of pivot row to that of the "composite algorithm."(7)

In Phase Two the procedure 1s quite ordinary. A
pivot column J 1is chosen so that cy is minimal (if all
are non-negative, the current solution is optimal). Then
the plvot row I 1is chosen so that after pivoting the cur-
rent solution will still be non-negative: I 1is the 1
which minimizes b, / ay;y; for all a;y >0. 1If by = 0--
degeneracy~--should happen, then I 1s chosen as the i
maximizing a,; among all 1 for which b, =0 . (This

"

rule 1s not known to prevent "cycling," but 1s very ef-

fective in practice.)(e)
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In Phase One the objective 1s defined as the sum of
the infeasibilities: £ [xJ P Xy <0 or %y artificiall

The reduced cost for the nonbasic varlable J 1is then

T ‘aij i by < o} -t fai

artificiall

i 3 b1 > 0 and position 1

The plvot column J 1s chosen for minimal reduced cost,
and the plvot row 1 so that no variavble non-negative in
the current solution becomes negative after pivoting: I
is the 1 which achieves the smaller of the two ratios
Min, fbi/aiJ P by, a5 ol , Max, fbi/aiJ P by, a1 ¢ )
A somewhat move complicated rule is needed for degeneracy.

In the absence of negative b1 , the pivot-row rule oper-

ates Jjust as in Phase Two.
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IV. STARTING BASES

The basis with which a problem is started naturally
has a great ini'luence on the number of iteratlons re-
quired to soive 1t. In practice one often attempts to
guess a starting basis which will be as nearly feasible
and optimal as possible; a sophisticated routine will make
pood use of such a guess even if the basis 1s incomplete,
infeasible, or singular. The three methods studied here
do not, of course, make any use of special information
about the proulem; they assume complete ignorance, and may
be used with any problem.

N basis: When no starting basis 1s specifled, a full
set of M artificial variables is adjoined to the problem
and constitutes the starting basis.

S basis: By singleton we mean a variable having

only one non-zero entry, and that positive, in the equa-
tions of the initlal tableau. An S basis is a starting
basis consisting of a maximal set of singletons, with
artificlal varlables used as necessary for the unfilled
positions. (The computational cost of pivoting on single-
tons 1is almost nothing, and feasibility is improved if all
the original right-hand sides are non-negative.)

F basis: A full basis was produced by this procedure:

first, an S basis was chosen; subsequently, each column
of the tableau was examined, and pivoted into the basis if

1t had a non-zero entry corresponding to any unfilled basis
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position. The only basls positions left unfilled by this
procedure are those corresponding to redundant constraints.
Naturally, the resulting basis is not 1likely to be primal
or dual feasible. Other procedures for obtaining a full
basis have been tried but not yet fully evaluated; they do
not seem to offer much advantage over the above,

Table 4-1 describes the bases resulting from the use
of procedures S and F. All the data are proportions, the
number of varlables in a given category being divided by
the number of constraints in the problem. The last two
lines constitute the proportion of infeasibilities in the
starting basis. Note, however, that artificial variables
initlally at zero level tend to become non-zero before
they are eliminated, so that for an S basis the total

number of artificlals 18 ihe Uetter measure of infeasi-

bility.
Table 4-1
Starting Basis Characteristics
Problem 1D 2A 1E 1A 5A 1G 1r 2B 1B
(S basis)
Singletons used .19 .87 .19 .3011.00 .90 .65 .86 .29
Positive artificlals .81 .00 .19 .70 .00 .10 .35 .05 .60
Zero artificlals .00 .13 .61 .00 .00 .00 .0C .08 .11
(P basis)
Negative variables .41 .00 .42 .30 .00 .23 .26 .10 .46
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Note that the proportion of infeasibllitiez In the
F basts runs a little morc than half the proportion in
the § baslis., We view this as accounting for the advan-
tape, to be scen below, of the F basls over the S basis.

We are mainly Interested in the number of simplex
method iterations required to obtain the first feasible
solution airter the starting basis has been constructed.
(In Sec. IX the cffect ot the work required to produce
the starting basis, as included in the total work to solve
the problem, 1s considered.) Bases N and S have been
used with two algorithms: the ordinary procedure and the
"ratio pricing" procedure, described in Sec. VI. The
results are summarized 1n Table 4-2. The first line com-
pares baslis S (run 21) with basis N (run 5, used as the
hase), for the ordinary alzcrithm; the second line com-
pares basis S (run 6) with basis N (run 8, used as base)
for the ratio pricing algorithm. The ratios thus repre-
sent the proportion in which the number of iterations in
Phase One 1s decreased by using an S basis rather than an

N basis.

Table 4-2
S Basis Compared to N Banis for Two Algorithms
Problem 1D 2A 1E 1A S5A 1 1F 2B 1B Avg.
Ordinary algorithm .89 .00 .69 .61 .00 .51 .42 .83 .50
Ratio pricing .86 .01 .85 .82 .00 .40 .58 .83 .54
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Evidently use of an S basis entails, on the average,
a saving of about 48% in the number of iterations required
for Phase One.

Comparison of bases S and F has been made in each of
three algorithms, with the number of iterations for baslis
S taken as the base data: the ordinary algoritium {runs
21 and 39, respectively); the sequential procedure (runs
31 and 36); and the least-infeasibllity procedure (runs
33 and 37). The last two procedures are discussed in
Sec. VI. Table 4-3 sumuarizes these, omitting problems

2A and 5A because thelr starting S and F bases are feasible.

Table 4-3
F Basis Compared to S Basis

Problem 1D 1E 1A 1G 1F 2B 1B Avg.
Ordinary algorithm .32 .71 48 1.62 .05 .69 .53 .63
Sequential .37 1.00 .37 2.43 .11 1,07 .55 .84
Least-infeasibility .33 .94 .35 2.27 .09 .93 .78 .81

The overall average of these proportions 1s 0.76, pre-
dicting a saving of 24% 1in use of an F basis rather than
an S basis.

We conclude that in the absence of other knowledge of
the problem, an F basls should be used. Some linear pro-
gramming routines(g) make 1t possible to use a mixed
procedure, entering a known partial basis and subsequently

completing it in an arbitrary manner.
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We may try to predict the number of iterations Phase
One requires using the ordinary algorithm. Each entry in
Table 4-U4 is obtained by averaging, for all problems, the
number of iterations taken using the basis N, S, or F
divided by one of three possible measures of problem dif-
ficulty--the number, M, of constraints, the number of
non-singletons, or the number of infeacibilities in the F

basis. Thus, for example, the number of iterations re-

quired using an S basis 1s expected to be .78 M, The

coefficients of varlation are given in parentheses. It

is disappointing that the number of constraints is a bet-

ter basls for prediction than the more informative measures.

Table 4-4

Phase One Iterations vs. Measures of Problem Difficulty

Starting
Basis

Measure
Number of Number of negatives
M non-singletons in F basis

N 1.69 (.3)
s .78 (.8) 2.13 (.9)
F .56 (.6) 2.07 (1.1) 2.12  (.8)
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V. THE FEASIBLE SOLUTION

In general, Phase One, the task of obtaining a first
feasible solution, 1s accomplished by employing the simplex
method to minimize some measure of the infeasibiliiy of a
solution. The five procedures studied here employ four
different measures of infeasibility. In all of them the
measure constitutes an objective functlon whose reduced
costs are calculated so that the choice of pivot column
can be made by the ordinary rule. In all but the "ex-
tended composite” algorithm the ordinary rule of plvot row
selection is uscd.

The ordinary procedure 18 described in Sec. III.

The extended composite procedure(lo) differs from

the ordinary in choice of pivct row. After the pivot
column has been chesen in the ordinary way, the pivot row
i1s selected 30 that the sum of infeasibllities after
pivoting will be minimized; varliables are allowed to change

sign freely. Thus I 1s defined by 8 = bI/aIJ . uBsEE
8, minimizes f,(|b, - 8 a,4| : b; - 6 a,; 1s infeasible} .
In the sequential procedure, the infeasibility 1is

corrected one component at a time, in order. At any
iteration, let 1o be the least 1 for which some b1 Q

is 1nfeasible, and x_, the corresponding variable. The

T
objective for minimization 1s defined zs X, if position

10 1s artificlal and bi is positive, or as “Xn it
o
b1 is negative. (The reduced cost for column | will
o
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then be Just a or -a .) During the procedure,

10'j 1oJ
row 10 will be made feasible, feasibility on the previous
rows beling preserved.

The least-infeasibility procedure is like the sequen-

tial, except that at each iteration the index 1o is
taken so that X, is minimal among all infeasible vari-
ables; the index may increase or decrease.
The fudge procedure, but not its name, 1s due to Gass.(S')
A problem having negative solution values is augmented by
a single artificl:l varlable and subjected to a trans-
formation yiclding non-negative solutions for the augmented
problem. Speciflically, the tableau is augmented by a
column containing the entry -1 1in each row having
b1< O and zeros elsevwhere; and the desired tableau is ob-
talned by pivoting in the Ith entry of the added column,
where bI = min1 b1 . Subsequently the sum of all the
artificial variables is minimized using the ordinary
algorithm; when it has been reduced to zero, a feasible
solution is at hand. (Of course, other means of getting
feasible could be used once the negativity has been re-
moved. )

Table 5-1 1lists the runs done using these five pro-
cedures, indicated at the left. The starting basis used

1s 1isted at the top.

*Pp. 120-125.
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Table 5-1
Feasible Solution Runs

N S F
Ordinary algorithm 5 21 39
Extended composite algorit.m (5) (21) 38
Sequentlai algorithm 31 36
Least-infeasibility algorithm 33 37
Fudge procedure (5) (21) 32

Runs indicated in parentnezcs were not done, since
the same results would have been obtained as in the run
whose number is given.

Tables 5-c and 5-3 glve the resulis for these pro-
cedures, for bases S and F, relative to the ordinary
procedure. The last line of each table is the proportion

of infeasibilities in the starting basis for each problem.

Table 5-2
Phase One, S Basis, Relative to Ordinary Algorithm

Problem 1D 1E 1A 1G 1F 2B 1B Avg.
Sequential .96 94 1.52 1.00 .98 .97 1.04 1.06
Least-11feasi- 1.08 1.03 1.36 1.05 1.2 1.12 .94 1.12
bility
Proportion infeasi- .81 .19 .70 .10 .35 .05 .60
bility

The amount of infeasibility does not seem to affect
the relative efficiencles of these methods much, although
it does affect the totrl work done, as the data for runs

21, 31, and 37 in the Appendix, or those of Table L4-4, show.
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Teble 5-3
Phase One, F Basis, Relative to Ordinary Algoritha
Problem 1D by § 1A 10 1r 2B 18 Avg.
Extended composite 1.00 1.08 1.42 .65 1.00 1.08 1.0 1.03
Sequential 1.12 1.33 1.17 1.50 2,00 1.51 1.08 1.39
Least-infeasi- 1.12 1.37 1.00 1.7 2.00 1.51 1.39 1.8
bility

Pudge 1.25 1.08 1.25 1.00 2.00 1.3% 1.01 1.27

Proportion infeasi-
bility AL k2 .30 .23 .26 .10 .46

The results pretty well establish the ordinary pro-
cedure & superior in getting feasible. 1Its objective 1is
responsible, since the minimization algorithm 1s the same
in all the runs. It seems that by moving in a direction
tending to minimize the sum of all the infeasibilities we
give more chance to a number of infeasibilities to leave,
while the sequential and least-feasible procedures, con-
centrating on & single variable at a time, are too single-
minded. Since several negative infeasibilities can be
removed in one iteration, while only one artificial variable
can, it 1s reasonable that the difference 1s more decisive
for F bases than for S bases.

The extended composite procedure 1s somewhat disap-
pointing. It might work better if, at the expense of
considerably more calculation, the pivot column were chosen

by the same criterion as is the pivot row.
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VI. THE OPTIMAL SOLUTION

Of greatest interest to the ordinary user 1s the amount
of work required to solve a complete problem. In this
section s8ix algorithms are compared in the number of iter-
ations required to obtain an optimal solution. All but
one of these are designed to handle artificial variables;
for them, the ordinary Phase One obJjective--the sum of all
infeasibilities--1i5 used; this was found most efficilent
in Sec. V. Unless otherwise noted, each procedure uses
the same methed {or minimizing its obJjective in Phase Cne
as 1t does in Phase Two, only the definition of the ob-
Jective changing between the phases. Similarly, each
procedure {except the "symmetric") uses the ordinary choi«e
of pivot row. They differ primarily in the manner of
choosing the pivot column.

The ordinary procedure was described in Sec. III.

The positive-normalized procedures (PNl and PN2) can

be viewed as representative of those proposals which aim
at eliminating the effects of bad scaling of the problem
data by dividing the reduced costs, used in choosing the
pivot column, by some combination of the coefficients

The first of the two considered here, proposed by

a .
= (11)

Dickson and Frederick, uses the formula d‘j -

2
2 2 +
¢ 4 (°J + Ly 8435 ), where aIJ

aiJ , choosing the pivot column as that J for which dJ

1s the "positive part" of

is maximal for cJ < 0 . The procedure PN2 1s essentially
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2
this, using instead the formula dJ = c? / 21 aTJ , Wwhich
glves the same result.
The PNl procedure empleys the slightly simpler formula

d, = ¢y / T, aIJ , with the pivot column chosen for mini-

J
mal dJ

The preatest-change procedure was described long ago,(l)
tbut has been little used. That column is chosen which,
af'ter plvoting, will give the greatest decrease in the
value of the obJective; it 1s the J which minimizes the
expresslon cy minifbi/a1J g aiJ > 0} for the change of
the obJective.

The ratio p~icing procedure was suggested informally
by Markcwitz some time ago. It differs from the ordinary
procedure only in Phase One. Letting wJ be the reduced
cost for the infeasibility objcctive then, and cJ be
the reduced cost for the proper objective, the pivot
colunmn J 18 chosen so as to maximize cJ/'wJ for W< 0;
we obtain the largest possible improvement in the proper
objective per unit change of infeasibility. It may be
viewed as an application of paramnetric linear programming:(S)
defining @* at each iteration as the largest @ such
that cJ + 0 wJ > 0 for all wJ < 0 , the pivot column
18 chosen 80 as to increase @* . Evidently when gt
becomes sufficlently large we have all wJ > 0, and Phase
One 1s ended. It turns out that almost all cJ are then

non-negatlive, too, so that Phase Two is quite short. The
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aim of the procedure 1s to obtain a first feasible solu-
tion which 1s nearly optimal; the data of the Appendix
for run 6 show that it does this well.

The symmetric procedure of Talacko(12) is employed
only with a full basis; 1t may take either "primal" or
"dual" simplex method steps. For one iteration: Among
those columns with negative reduced costs and those rows
whose basic variables are non-negative, a potentlial pivot
is determined using the greatest-change procedure as de-
scribed above; and among columns with positive reduced
costs and rows with negative variables, a potentlal pivot
is determined using the dual of the greatest-change pro-
cedure (for which the greatest increase of the objective
is sought). That pivot is uscd for which the magnitude
of the obJjective change is greater. If a step of the firat
kind 1s taken, all non-negative basic varliables stay non-
negative. The procedure does not always terminate in a
solution of the problem;(le') but 1t did for the test
protlems.

The parametric procedure of Dantzig(13) 1s likewise
employed conveniently only with a full basis, and takes
either primal or dual steps. It is generally like the
symmetric procedure, but its termination 1s known. At

the beginning of procedure a column of right-hand side

*
P. 10.
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changes 1c added tc e tableau so th”t Wheis the column
1s multiplied by an initial value (ﬂu » 0) of the param-
eter @ and added to thc current nanic seolution the
result willl be non-negative; and Likewise z row of cost
changes is added to the tableau so that when multiplied
by the initial value of @ and added to the current re-
duced costs, the result will be non-negative. Iu this
manner a problem involving the single parameter @ has
been defined which 1s both primal and dual feasible when
g = ﬂo and 1s equlvalent to the original problem when

# =0 . The procedure consists in then reducing ¢
using the pivot cholce rules of the parametric linear
programming algorithms,(5’13) which will give a sequence
of primal and dual feasible solutions for a decreasing
sequence of values of ﬂ terminating in zero.

Table 6-1 compares all these, taking the ordinary
procedure as the base (run 21).

Of the runs with singleton basis, the positive-
normalized procedures are outstanding, and overall the
greatest-change procedure with full basis is best. Un-
fortunately the positive-normalized procedures .aave not
yet been tried with full bases; they might perform even
better. Incidentally, the data of the Appendix show that,
with the natural exception of ratio pricing, the dif-
ferences among the procedures are reflected in Phase One

in about the same way as 1in the entire process.
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The data of Table 6-1 allow the symmetric and
greatest-change procedures to be compared directly with
the ordinary procedure with full basis. Using run 39 as
base, the averages and coefficients of variation obtained
are: symmetric algorithm, .92, .3; greatest-change
algorithm, .78, .3; parametric algorithm, 1.25, .2. The
relative efficlencies of these procedures are not changed
much by calculating them from the different base run.

It 1s of considerable interest to find some means of
predicting the work needed for a problem about which
little is known. In Table 4-4 it was found that the
number M of constraints was the best guilde of those
studied to the number ot iterations for Phase One; we shall
use it also 1in connection with the total iterations re-
quired. Table 6-2 thus lists the number of iterations
required to solve each of the problems using the ordinary
algorithm divided by M . It would appear that rule of
"2M iterations" from folklore is fairly good when a

singleton basis is used.

Table 6-2
Iterations/Constraints for Ordinary S basis (run 21)
2A 1E 1A SA 1G 1F 2B 1B avg. c.V.
1.67 1.71 1,27 1.09 1.29 1.83 1.18 3.33 1.71 .4

The corresponding data for the algorithms of Table
6£-1 can be found by multiplying the entrles of 6-2 by
those of 6-1. The averages thus obtained appear in Table
6-3.
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Table 6-3
Summary of Iteratilon: ts

Algorithm Run Averaye c.V.

Singleton basis

Ordinary 21 1.71 A
PN1 10 1.24 .2
PN2 14 1.24 .2
Greatest-change 15 1.36 .3
Ratio pricing 6 1.50 4
Full basis
Ordinary 39 1.39 A
Symmetric 40 1.18 .5
Greatest-change 41 .9 .2
Parametric 59 1.60 .3

A more detalled examination of the data seems to
show that the dependence of the number of iterations on
M could be better expressed by a formula of the form
k Mb , where b 1s slightly less than one, but this is
not clear. Using a singleton basis an estimate of between

M and 3M° 1iterations will almost always be correct.
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VII. SUBOPTIMIZATION

Versions of suboptimization have been used for some
time 1n linear programming routines bothered by small
core size, but the advantages of a version of 1t for routines
fur which core size 1s no particular handicap were first
exploited by D. M. Smith.(lu) As used here, the course
of the solution of a problem consists of a number of
passes, at the beginning of each of which some number L
of nonbasic columns is selected as a set of candidates for
pivoting (those having the L minimal reduced costs are
chosen). During the pass no other nonbasic columns are
considered; simplex method iterations are performed using
the selected columns until the obJjective has been minimized
on that subset. (A basic coliuin which becomes nonbasic
during the pass 1s not further considered.)

The number L of candidates 1s an important para-
mebter; values of 2, 3, 5. and 8 were used here. During a
pass, any of the various means of selecting a pivot column
discussed previously might be used in minimizing the ob-
Jective on the candidates. Three were tried here: the
ordinary procedure of minimal reduced cost; the greatest-
change procedure; and the procedure PNl.

Both the number of iterations and the number of passes
required to solve a problem are of interest. In the
table below, the numbers required are all compared with

the number of 1terations used by the ordinary simplex method
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(run 21), which would be the number of passes for any of

the algorithms tfor L =1 . Only the averages and coefliclents
of varlation are glven for these runs; the individual data
fluctuate considerably less than in most of our experi-

ments. An intercsting feature of the raw data not re-

flected 1in the averages 1s that the greatest-change

procedure commonly requires fewer 1lterations under sub-
optimization than does the ordinary procedure without 1it,

which 1s generally not the case for the other methods.

Table 7-1

Suboptimization Runs Compared to Ordinary Algorithm

Run Algorithm L Iterations Passes
average c.V. average c.v.
ol ordinary 2 1.1 .2 .72 .2
2 - 3 1.2 .2 .60 .2
2 " 5 1.26 .2 .45 .2
29 u 8 1.31 .3 .37 4
2 greatest- 2 1.0 .2 .72 .2
2 change 3 1. .2 .59 .2
25 " g 1.08 .3 45 .3
26 " 1.13 .3 BT .3
42 PN1 2 1.15 .1 .72 .2
43 g 3 1.22 .2 .58 .2

The term "pass" arises from the fact that it 1s only

necessary to consult the data for the entire problem once
during a pass; the data whiich have to be retalned for the
subsequent suboptimization are much fewer. This fact

makes 1t particularly valuable in product form routires
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and thosc which use tapes extensively. (The three main
forms of the simplex method are discussed in Sec. VIII.)
The significance of the statictics above depends on the
form of routine uvsed. In the product form, the total
work done cepends largely on the number of passes; in the
standard form, on the number of iterations; and the ex-
plicit form ls Intermedlate. Thus suboptimization is of
value in the product form even for all-in-core routines,
but not in the standard form. Three production linear
programming routines now use it in the manner described.
They are all product form routines, one using the ordinary
algorithm with L = 2,(9) another the greatest-change
algorithm with L = 2,(2*) and the third has options for
either algorithm and any L up to 5..15)
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VIII. OPERATIONS AND FORMS

So far we have been concerned only with the number
of 1terationr required Lo solve a problem. A better
gulde to the computational efficlency of a procedure is
the number of floating-point arithmetic operations per-
formed--the work which must be done no matter how the
algorithm 1s implemented. While logic and bookkeeping
time are usually appreclable, and vary between different
algorithms and different forms of the simplex method, it
1s preclsely in such non-arithmetic work that computers
and programming systems differ the most. Having program-
med each of the procedures studied here as economically
as we could from the standpoint of arithmetlc, we feel that
the results on arithmetic work come close to a machine-
independent measure of efficlency.

Although it would be possible to count separately
each elementary operation, it turns out thal there are
only three combinatlons o1t elementary floating-point
operations used significantly often in each of the major
subdivisions of an iteration: addition and multiplication;
division and subtraction; and additlon alone. Eaclh of

the followling three grouns 1s thus called one operation:

1 floating add and 1 floating multiply (17.%)
1 floating divide and 1 floating add (19.4)
3 floating adds (19.2).
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The average numbher of 7090 cycles taken by each combi-
nation 1s glven in parentheses. While some error 18 made
in considering all these equivalent, it is very small,
because the first combination accounts for almost all the
calculations. In all cases (except for a portion of the
reverse-transformation calculation in the product form)
an operation is counted only when both operands are non-
zero.

There are many ways of calculating the data required
for the steps of the simplex method. In all of them the
data used in the ordinary procedure are obtained, but in
different ways. The three main forms of the method are
described below in outline; the details may be found in
the literature.(s’s) In considering the number of opera-
tions performed in one iteration in any form, it is con-
venient to have a priori estimates in terms of M (the
number of constraints), N (the current number of variables),
and M + K (the total number =f rows «f data). In the
formulas below, factors of proportionality 6 Dbetween
zero and one reflect the fact that operations involving
zero data are not counted; and quantities of order smaller,
than M2 are disregarded.

The standard form 1s done Just as the ordinary pro-
cedure is described in Sec. III. Pivoting in the tableau
1s most of the work (requiring 81(M+K) (N-M) operations).

Boti: forms of the "revised simplex method" calculate
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needed items of the tableau by multiplying parts of the
original matrix A by parts of the inverse, the lnverse
of the M + K-order matrix consisting of the basic
columns of A . The reduced costs are obtained by
multiplying A by the prices, that row of the inverse
corresponding to the objective row of A (02(M + X) (N-M)
operatlons); the selected pivot column of the tableau is
obtained by multiplying the appropriate column of A by
the inverse (the number of operations required for this
and the remaining steps differs for the two forms); the
pivot row 1is selected as usual; and plvoting is done both
in the inverse and the current solution.

In the explicit form, or the "revised simplex method
witih explicit form of the inverse," the inverse 1s a
square M + K-order matrix, all of which is pivoted in
at each iteration. Pivoting requires eu(M + K)2
operations, and the prior multiplication for the pivot
column requires 93(M + K)2 sperations.

In the product form, or the "pevised simplex method
with product form of the inverse,”" the inverse is main-
tained as a sequence of transformations, each of which,
having at most M + K nonzero entries, constitutes the
nontrivial portion of the pivot column of the tableau as
of some previous iteration. Applied appropriately, these
transformations accomplish the work of matrix multipli-
cation required by the revised simplex method. In a

plvot step these data are not altered but are augrented
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| ty one more transformation. Their total number is
generally somewhat less than (M + K)g, and most, but
not wll, of' tnem are used once in obtalning the prices
(65(M + K)Z operations) and the pivot column (96(M + K)2
operatlions). The number of accumulated transformations
1s periodically reduced by "reinversion," the reconstruc-
ticn of a product-{ovm inverse from A 1in a minimal
scquence of pivots. The routlnes used here reinvert auto-
matlcally at those points they determine will minimize the
total operaticn count for the calculatlon.

In summary, the formulas of Table 8-1 indicate the

dependence of the number ol operations per iteration on

problem size.

Table 8-1

Number of Operations per Iteration

Standard form 8, (M+K) (N-M)
Explicit form 6, (M+ K) (W -#) + 65 (M+ K)? + 0, (M+K)2
Product form o, (M+K) (N - i) + 0, (M+ K)? + 8 (M + K)?

It 1s beyond the scope of thls study to discuss the
factors 6 of these formulas in detall. They will be
used Instead as gulides to the scallng of our operation
counts. Since for our problems N 1s closely propor-
tional to M (N/M ranzes from 1.67 to 3.43, averaging
2.31 with coefficlent of variation 0.27), each of the
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formulas has, approximately, (M + K)2 as a commcn
factor. Thus, comparative data for the three forms can
be obtalned as follows: for each problem, divide the
total number cf operations required to solve it by the
number of iterations, and divide the result by (M + K)2
The data of Table 8-2 were obtained in that way; for all

forms, the ordinary simplex algorithm was used, and an

S baslis.
Table 8-2
Operations per Iteration / (M + K)2

Problem 1D 2A 1lE 1A SA 16 P 2B 1B avg. c.v,
Standard form .68 3.00 2.11 .4% 1.28 .79 .76 .59 1.23 .7
{run 12)
lxrlicit form T 95 .77 .49 .54 .31 .38 .29 .67 .57 R}
run 21)
Product form .56 1.00 .54 .32 45 .27 .25 .1 .26 R Y] R
{run 56)

The decrease of the ratios with size of problem is
noteworthy; 1t 1is probably due to the decrease of the
proportion of nonzero matrix entries. Table 8-3 makes a
more direct comparison of theze data, using the explicit
form run as a base. Note that the relative efficlency
of the product form tends to increase with the size of
problem, owing, we think, to its greater abllity to take

advantage of the lower density of nonzeros.

Table 8-3
Standard and Product Compared with Explicit Form
Problem 1D 2A 1E 1A S5A 10 1F 2B 1R avg. c.v,
Standard form 1.28 8.67 3.03 .83 2.30 2.57 2.04% 2.63 2.82 . &

Product form .82 1.05 .78 .68 .79 .B6 .67 .45 .43 .7 .3
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IX. ALGORITHMS COMPARED BY OPERATIONS

The algorithms of Sec. VI may finally be compared in
the total number of operations they require to solve a
problem. In Table 9-1 they are all compared with the
ordinary algcrithm in explicit form (run 21). With the
exception of that procedure, each algorithm given has
been run in that form of the simplex method best suited to
1t; the ratio pricing and the greatest-change (with F

basis) procedures are ocmitted because they were not.

Table 9-1
Various Algorithms Compared with Ordinary, Explicit
Problem 1D 2A IR 1A 5A la 1P 2B 1B avg. e.V.
Singleton bdasis

FN1--standard W75 2.1% 2.42 .67 1.5% 1.21 1.32 1.37 1.43 N
run 10

PN2--standard 1.07 2.53 2.84 .%3 1.79 1.52 1.18 1.82 1.66 N
run 1%

Oreatest-change 1.15 3.66 3.72 .33 2.37 .99 1.66 2.36 2.03 .6
standard run 15

Ordinary--product .82 1.05 .7% .6& .79 .86 .67 .45 .43 .71 3
Tun 50

Full basis

Symmetric stand- .57 4.806.04 .47 2.81 2.64 1.01 1.42 2.47 .8
ard run A0

Ordinary--product .63 1.4 .81 .W .89 .86 .25 .37 .38 .68 .5
run 55

We think that these figures constitute the best
overall assessment of these alternative algorithms from
the point of view of calculation needed. The product form

of the ordinary algorithm seems definitely superior, with
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use of a full basls probably being worthwhile for the
larger problems.

We may try to predict the operation count for an
unknown problem of glven size. In Table 9-2, the counts
of run 21 have been scaled in a manner intended to elimi-
nate most of the influence of the size of the problem.
Using the factor (M + K)2 as in Table 8-2 to scale the
count per iteration, and the factor M as in Table 6-3
to scale the number of 1lterations, we obtaln the quotients
of 9-2. The corresponding quotients for the other runs
can be obtal:ed by multiplying those of 9-1 by these
numbers; the uverages and coefficlents of variation for

those ratios are given in Table 9-3.

Table 9-2
Operations / M(M + K)2 for Ordinary Explicit
Problem 1D 2A 1E 1A S5A pY:] 1F 2B 1B avg. c.V.
1.82 1.58 1.32 .62 .59 .40 .70 .34 2.22 1.02 .6
Table 9-3
Operations / M(M + l()2 for Other Runs

Algorithm form Basis Run Average c.v.
rm standard s 10 1. .8
PN2 " S 14 1.36 9
Greatest-change " s 1 2. gg 1.0
Ordinary product s 22 .73 5
Symmetric standard 14 ] 2.57 1.2
Ordinary product P 5 .73 .9
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Sinee in practice K 1s usually 1, we can say that
aronnd M3 operatlons are required to solve a linear
programming problem. A rough minimum for problems of no
more than some 100 constralnts is 0.3 M3 , and 2 M3 is
a rough maximum for smaller problems. A count of more than
3 M3 Indlcates an uncommonly hard problem or a rather

pcor algorithm.
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X. CONCLUSION

Three kinds of data have been used above: 1iterations,
operations, and passes. We have come to the view that
iterations alone is the least informative: on the one
hand, the operation count measures the total work of a
routine, and on the other passes measure the amount of data
handled. Of course, except for those of Sec. VII, sub-
optimization 1is not used in any of the routines studied,
so that in general the number of passes 1s equal to the
number of iterations, which is the number we usually cite.

The results of Sec. IV show that use of a full basia
will reduce the iterations taken in Phase One. (In Sec.
IX, however, we found that it 1s of 1little value in re-
ducing the operation count for the most efficient procedure.)
It appears that there 1s no excuse for using an entirely
artificial basis,

In Sec. V we falled to find any measure of infeasi-
billity with which to conduct Thasc Ciic wwhioh works better
than the ordinary measure--the sum of all the infeasibilities.

The results of Sec. VI show the positive-normalized
procedures beat in terms of iteration count, and that the
full basis 18 good for the overall problem. The first
conclusion 1s consistent with the interesting results of
Kuhn and Quandt,(16) who have experimented with several
pivot-column selection procedures on a large number of

randomly-generated linear programming problems of special
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type having up to 2% constraints. 1In the only place where
their results can be matched with ours, we agree in
ordering these procedures in increasing effectiveness in
iteration count: ordinary, greatest-change, and positive-
normalized. Our data suggest M and 3M as bounds for
the number of iterations to solve a problem starting from
a singleton basis.

The extent to which suboptimization will be of value
in a routine depends considerably on how its data-handling
is organized. Section Vil shows that it can be used with
little harm and under some circumstances with benefit to
the total computational 1labor.

The comparison of operations per 1lteration in Sec.
VIII shows pretty definitely that the order of the three
main forms of the simplex method in increasing efficlency
is: standard, explicit, product. The fact that those
algorithms which are better than the ordinary in iterations
need data which are conveniently obtalned only in the
standard form makes them less attractive from the point of
view of operation count; Sec. IX -hows that the ordinary
algorithm in product form leads the rest. There are other
conslderations, however, for general uses of a linear pro-
gramming routine, which are hard to evaluate properly but
which argue for the standard form: in that form most of
the data needed for the usual postoptimal analyses--re-
duced cocts, etc.--are immediately available and need not

be especlally calculated.
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An important fact about the product form, whose
detailed study is beyond the scope of this report, is that
the product-form inverse is extremely compact for problems
of low density. Thils fact has considerable bearing on the
choice of a routine for larger problems. SHARE problem
4A, having 245 constraints, can be solved with an all-in-
core routine(g) for the IBM 7090, which has 32,768 words
of core. A similar routine using the explicit form would
require 75,000 words, and using the standard form, 118,000
words.

At this time, we feel that a product-form routine
employing the ordlinary or the greatest-change algorithm
with sub 'ptimization, with option for using a full basis,
will pull together the best features of Liie procedures we
have studled so far.

It may seem disappointing that our results have not
allowed a more declsive ordering of the proposals studiled.
In part, of course, this 1s due to our having selected the
more promising possibilities from a larger number of candi-
dates; but 1t may also be the case that, as linenr programming
is presently uncerstood, it 1s not possible to do a great
deal better than some of these procedures do. A linear pro-
gramming method has two parts: find the optimal basis, and
calculate the optimal solution. If the optilmal basis were
known, 1t would still in the general case require scme

%M3 operations to solve the linear equations thus identified
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(although a product-form method would do much better for
prcblems, like ours, having a low density of data). Since
some of our procedures do the whole Job in about M3
operations, there does not seem to be an enormous amount

of room for ilmprovement.
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IR SCERNP RUNG AND DATA

for bases--Mone N, Zingleton 8, Mull F; for forwms of the

Oordinery
huo”prlun‘

Positive-normalized 1
Ordi

nary
Positive-normalised 2
Greatest-change

Oordinary
Ordinary with enboptulntlom Le '5‘

L]
- g
hnmt-onuu: with suboptimization; L » 2
k)
L]
. g
so::nun Phase One
n Mase One
least-infeartvility Phase One
Sequential Mase One
least-infeasibility Phase One
Extended composite Phase One
Ordinary
trio

Symae
Greatest-changs
Ml with lubopghiuuon; L= ;

Ordinary
ordinary
Parametric

(These abdreviations are used: pl, iterstions in Phase One; p2, total iteration

count to solve problem; pa, number of passes to solve problem; op, total operation
count to solve problem, whers "X" stands for "000".)
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p2
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3
3
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A2
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56 5 12% 62 7 143
38456 199K M1k 118k 227K 8asx 5633?

S 52 80 lz. Al 102 28
32297 177K 283K 6.97 123k 585K M3829
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Run  Data 1A
15 pl 24
oe 32
op 7717
21 pl
p2 42
op 23682
22 p2 3
pa 2
23 pe 38
pa 25
24 p2 36
pa 18
25 p2 33
pa 12
26 p2 kY
pa 10
27 p2 39
P 16
28 p2 39
pa 15
29 pe 37
pa 9
3 pl 38
32 pl 15
33 P 34
36 pl 14
37 Fl 12
38 pl 17
39 pl 12
p2 22
op 12439
40 p2 19
ap 11193
41 Pl 7
p2 23
2 pe 42
pa 24
43 p2 3
pPa 1
55 pe 21
op 1032
56 p2 41
op 15050
59 p2 2%

1B

33

3620k

233
135
238
145
186
135
134

296
3205K

80

105

285
1387k

¥21
1540K

1p
5
38449
2

oo

63
35
56
35

2
%
50
22
56
20
68
28
69
23

56
18
2%
10
27

9
9
8
8
34
14015
23
17012
1

21

58

33
62
28

8
189?J

56
24531
2

U4

1E
43
5
232K
3%

5
62372

6h
A3

63
LT]

82
33

7L
37

70
25
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3

32

35
32
33

24
49
79322
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377k

18
36

68
a3

509%2

56
45923
80
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